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SUMMARY

The general equations that govern the shape of the optimal

flight paths that may be executed in a vertical plane are written

out in a form which is especially suited to study of the practical

situation wherein the complete trajectory is made up out of piecemeal

sections of diverse character. As a rule, real flight paths will be

found to consist of such spliced together portions of trajectory-

segments, along which special local rules of flight will be in fcrrce

in order to meet a series of variant conditions, such as are usually

imposed, for instance, by placarded rules of operation designed to

prevent over-stressing of the structure, excessive engine wear, flame-

outs# instabilities in the electronics, etc. The criteria which must

be followed in linking together these component pieces making up the

total contribution to the final trajectory are set forth in general

terms in this paper and then the solutions of some particular cases

are offered in illustration of the way the recommended optimization

procedure is to be applied in practice.

_"Soluzioni Discontinue nei Problemi di Volo Ottimo."

della Accademia delle Scienze dl Torino, Vol. 90, June 1956.

pp. 533-551.

Atti



1. Very rarely in actual practice does a vehicle move on

an optimal* flight path which is prescribed o_.'er its entire length

by the same set of governing relationships amt restraints. It is

more generally the case that the trajectory will have to be pieced

together out of a series of individual sections, each with a dis-

tinguishingly different character from that of the next segment.

It will be true in many instances, for example, that over a part of

the flight path the stick (or other control for the angle-of-attack

mechanism) may be required to undergo continuous actuation and like-

wise the throttle regulating the propulsive device may need to be

so opera_:ed as to produce a continuously changing thrust. On the

other hand, along other stretches of the trajectory, it is a common

occurrence to find that either or both of the control levers regu-

lating these components of the aeronautic system have come up against

their stops, or, if the actuators have not ac_:ually come to the end

of their allowable travel, it is often required that they remain

fixed at a certain intermediate position in order that some particu-

larly advantageous mode of operation will be _:ontinued once this

regime of flight has been reached.

In addition, restraints of a more indirect nature are often

stipulated to be in force over certain parts (_f the trajectory. Thus,

* The method of attack employed herein is based on the Mayer method
which requires merely that the quantity to be minimized or maximized
need be defined only when writing the boundary conditions. The dif-

ferential system holds regardless of how this quantity is expressed in

terms of the end-values of the variables involved, which, in the present

instance, are taken to be: time, horizontal and vertical distance,

velocity, mass, and the angle of inclination of the tangent to the tra-
jectory.



it frequently happens that a placarded safe-flight limitation, such

as a maximumload factor, will be placed as a ceiling over a whole

gamut of multiple combinations of flight conditions which are not

to be exceeded. A similar type of generally-stated permissible

flight envelope usually is staked out also when it is demandedthat

certain barriers or minimumobjectives are to be surmounted at all

costs.

Certain of the questions pertaining to such so-called

discontinuous variational problems have been discussed by the author

in an earlier note (Reference 1). In particular the equations have

been developed in this earlier paper which govern the case wherein

one wishes to apply constraints which prescribe how the angle of

attack is to vary or which regulate the rate at which fuel is to be

consumed. In the present study, however, more general "contingent"

conditions are considered, and consequently more basic and generally

applicable criteria are set up for bringing about the proper union

of the various sub-elements composing the composite trajectory.

In formulation of this more versatile analysis of

optimal programming with piecemeal solutions, two important variables

are introduced which are related to Lagrange multipliers and which

are called simply "index values" in this treatment; one of these vari-

ables governs the power plant while 4:he other regulates the angle of

attack. These index values are continuously variable along the whole

flight path_ regardless of the way in which it is pieced together.

With the aid of the graphs representing the drag polar of the airplane

and the operating characteristics (thrust chart) of the motor, one may

proceed to link together the sequential pieces of arc which constitute



the totality of the contributions to the final connected trajectory.

This welding together of the contributory sections must be done in

such a way as not to controvert the Weterstrass conditions, and it

is the use of the index-values at the transition points between

adjacent pieces of the trajectory which affords the means of guaran-

teeing that a proper join is going to be produced.

2. The mathematical analysis underlying this extended

optimization procedure may be developed by starting with the follow-

ing simple notation and set of definitions. Let the mass of the

airplane be denoted by m. This mass is considered to be concentrated

at a point, and the velocity vector V which is associated with the

motion of this point is agreed to lie entirely within a single verti-

cal (x, z)-plane. The following forces are as_$umed to be applied to

the mass in question: the weight W = mg is aligned with the nega-

tively directed vertical ordinate, i.e., it acl:s along -z, while the

lift is perpendicular to V and the net thrust N = T - D is parallel

to V, where the net thrust is the residual for¢:e arising from the

inequality of thrust and drag. It: is assumed :hat the acceleration

_bae to gravity is a constant, denoted by g. Furthermore, let the

angle that the tangent to the trajectory makes with the horizontal

be represented by the symbol _ , so that _ is the angle between V

and the x-axis.

Then let it be premised that the drag and thrust are

to be known functions of altitude, z, speed, V.. and respectively,

the lift, L, and fuel consumption (rate of dec:'ease in the mass, m),

C; so thai one may row write:



D = D (z,V,L) (i)

and T = T (z,V,C,) (2)

The set of graphs which show how the thrust, T, varies as a function

of the fuel consumption, C, for given values of z and V_ is called

the "thrust curve" of the engine, while_ likewise, the set of graphs

which displays how the drag_ D, varies as a function of the lift, L,

for given values of z and V, is called £he "drag polar" of the air-

craft in question.

In order to simplify the notation, let the c_stomary

convention also be adopted that a dot over a symbol denotes that the

total derivative of the so-lndicated quantity with respect to time

is meant. Then, in addition, a partial derivative with respect to a

certain variable will be denoted by affixing a corresponding sub-

script to the symbol representing the function in q_estion, except

that the subscripts i, j, o, or any numeral will have their usual

ordering significance. If the ordering i_dices i or j appear twice

as subscripts in any term, it is to be taken for granted that a sum-

marion symbol stands in front of the term, denoting in this shorthand

way that the sum must be taken of all such terms with every sequential

integer supplied throughout the range of the indicated indices. Fi-

nally, it will be found convenient to ase affixes of capital letters

to designate locations, i.e., the value of the quantity f at the point

A will be designated by the scheme fA while the difference that exists

in a quantity at two different locations may be demoted by means of the

IZ stands forevaluation convention employing a vertical bar, i.e., f A

fZ _ fA.



Now let the notation be further generalized by setting

Y0 ffi t ' Y2 ffi z ' Y4 = _J_

(3)

Yl ffi x ' Y3 ffi V ' Y5 = m

and introduce the Lagrangian multipliers _ (t) so as to form the

functions

F = _j _j J running from 1 to 7 (4)

and H " Yl Fyi i running from I to 5 (5)

where _°1 - _¢ - V cos _ (6)

_2 = _ - v sin _? (7)

_3 " V + g sin_- N/m (8)

_4 = V_ + g cos_- L/m (9)

'_5 = _ + c (10)

6d,

= h (C, Yl' , y5 ) (l_)

= _ (L, Yl' ""' Y5 ) (12)

The fact that _1 ffi _2 = _5 = 0 is obvious from the

definitions of the quantities involved. It may also be readily

recognized that _3 = _4 = 0 because these constitute merely the

equations of equilibrium between the forces acting along the tangent

to and the perpendicular to the trajectory_ all confined in the

(x, z)-plane.

Now the conditions expressed by the relations _6 ffi 0

and _7 = 0 may be thought of as conditions of restraint which may

be utilized for prescribing, for example, that the attitude control



stick is to remain fixed or that the throttle is to be pegged in

one position. If it should happen that these additional contingent

conditions are not employed for prescribing restraints in this

manner, then the system is said to have two degrees of freedom. On

the other hand, if both restraints are imposed, then only the bound-

ary values are left free for choice when determining the sought

extremal trajectory.

3. In the Mayer variational method for finding the optimum

trajectory, one proceeds to find the functions Yl''''' Y5' C, and L

as functions of t, under the conditions that _1 ="" = = O. In

doing this it is seen that the pertinent Euler's Equations, dF_t/dt =

F for 1 running from 1 to 5, may be wri'tten explicitly as follows:

Yi' = 26 hx ÷ ?7 (13)

_2 = ?3 Nz/m = _6 hz + 37 ]Z (14)

_3 + ?i COS_ + ?2 sln_ + _3 Nv/m - )4 _ =

?6 hv + Qv (Is)

V (_4- _i sin_+ a 2 COS_)- _ g COS#+ _4 N/m =

;6 h_ + )7 2_ (16)

_5 - ?3 N/m2 - 24 L/m2 = _6 hm + 27 _m (17)

In the case of the quantities C and L the pertinent

Euler's Equations are F C = F L = O, and thus it follows that

23 TC - _5 m = 26 m h C

and

(18)

_4 - ?3 DL = _7 m _L (19)



Inasmuch as MF/dt " O, one recognizes that the

first integral for F is H - c where c is a constant, and thus a

restraining relation that exists between the variables is found

in the form

+ + + 24 + 75 s, (20)

Now this equation may be used to replace one of the Euler Equations,

Eqs. (13) to (17), related to the variable Yi' along any portion of

the sought trajectory where Yl is not identically zero.

For the problem wlth two degrees of freedom it is

clear that there will be 12 dependent variables, namely, C, L, Yl'

"%Y5' _1'"" ' _5" These 12 variables are to satisfy the system of

differential equations _1 ..... _5 = 0 and are subject to the

dictates of Eqs. (13) through (19) besides. In the event that there

is only one degree of freedom, then there is to be added one addi-

tional condition, either h = 0 or _ - O, together with one additional

variable _6 or _7" In those situations where both of the conditions

h = 0 and _ = 0 are invoked along any piece of trajectory the differ-

ential system _1 ..... _7 = 0 is adequate for determining all the

variables except the Lagrangian multipliers, _ut the latter may be

obtained subsequently by recourse to the set of Eqs. (13) through (19).

Further discussion is given In Reference 1 concerning

the way in which the boundary conditions shou.d be applied in arriving

at the specific optimum shapes constituting the scallops of trajectory

that are being sought, and the reader is refer'red there for Information

on such particulars.
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4. At the junction between two sections of trajectory_

for which different expressions for either h or _ are prescribed,

the Weierstrass-Erdmann corner conditions must be satisfied. If

the symbol _ is now introduced to denote the jump which occurs in

any quantity at such a transition point, it will be required that

/Xy i = /x _i = A c = 0 for i running from 1 to 5o

Therefore, in consequence of the fact that the set of

null expressions _i ..... _5 = 0 holds, one may deduce that

Jm/\V = _N and /_ =-AC
(21)

and also from the fact that _c = 0 it follows that

ql/_C =ZkN + q2ZkL

where ql and q2 are the "index-values", defined as follows:

ql = _5m

and

(22)

(23)

Further conditions may be imposed on the values of _C

and _L as a result of taking into account the restraints represented

by the equations _ = 0 and _ = 0.

* The curve under consideration here is still called a trajectory

even when the group of coordinates involved in its description hap-

pens to be other than the customary horizontal and vertical location

parameters, x and z.
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5. Nowthe Weierstrass function maybe written as
*.

E = -F_i _Yi (24)

where _* is used to denote the difference in value between any

quantity which pertains to the sought extremal path itself and the

corresponding value of the quantity in question when it belongs to

any arbitrary admissible virtual path. Inasmuch as _Yi = O,

and because the differential system _i = 0 (for i running from 1

to 5) must be satisfied, it follows that the same set of relations

which were valid in the case of the _ differences, as given by Eqs.

(21), must now also apply when dealing with the _* differences.

Consequently, it is required that

)a
E - m (ql.g*c - q2,&*L - &*N) (25)

It is well worth noting at this juncture that an

interesting and important geometric aid to understanding of the

role played by the index-values is made evident when one examines

the implications of the Weierstrass condition that E _ 0. Let Pl

be a typical point, representing the power-pla_t operating con-

ditions, for the optimum trajectory, on the thrust-curve plots

(C, T); likewise let P2 be the corresponding point, representing

the aerodynamic behavior, for the optimum trajectory, on the polar

diagrams (L, D). Now for the operating condition for which one re-

quires that _3_0 it will be necessary to se,_ to it that the whole

thrust curve should lie on the side of negattw_ T with respect to

the straight line having a slope given by dT/dC = ql and passing

through the point Pl on the engine charts. LikeWise, it will be
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necessary to see to it that the drag curve should lie on the side

of positive D with respect to the straight line having a slope

given by dD/dL = q2 and passing through the point P2 on the drag

polar. Consequently, it is easily appreciated that there has thus

been set up two forbidden areas on the engine operating plots and

on the drag polars, into which the straight lines with slopes ql

and q2' respectively, must not penetrate when the operating charac-

teristics for the trajectory in question are traced out.

Inasmuch as the index-values, ql and q2_ are the

controlling factors entering the Weterstrass condition, it follows

that they will be the guiding factors in building up the whole con-

nected trajectory out of the piecemeal solutions; this is the funda-

mental concept which is to be exploited in the extension of the

usual variational problem to apply now to the pleced together path

made up of disjointed sections along which variant sets of restraints

are imposed.

If it happens that the condition that h _ 0 is assumed

to hold over the entire trajectory, then _*C _ 0j and thus the stipu-

lation pertaining to ql and the thrust curve is suppressed. On the

other hand, if it happens that the condition that _ z 0 is assumed to

hold over the entire trajectory, then _*L _ 0, and in this instance

the stipulation pertaining to q2 and the drag polar is no longer in

force.

6. Some of the special features of the scalloped trajec-

tories which will be obtained when applying the index-value concept

in linking the pieces together into a connected optimum path will be
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discussed now first of all in general terms. Let attention be

focused to begin with on a piece of optimum trajectory along vhlch

the stipulation is imposed that h - 0 but where h C _ 0. Now ac-

cording to Eq. (18), under this hypothesis and along wlth the

supposition that 4 6 ÷ 0, it then follows that ql _ TC• and thus

the straight line wlth slopes ql will cut through the thrust curve

in general. This situation may be Interpreted as follows: If the

constraint embodied in the stipulation h - 0 were waived so that

the power plant would be free to operate In any way that might be

desired rather than according to a prescribed program, It would be

found that there exist values of &*C for which EGO. In other

words, it would be possible to find a mode of motor operation which

would be an improvement over the constrained optimum under consider-

atlonj by allowing the fuel flow to be varied Jn an appropriate way.

Such a state of affairs would not necessarily occur, how-

ever, if the typical point representing the power plant behavlor ls

located at a cusp point of the thrust curve where two sections a'

and a" of the thrust-curve characteristic join together. In thls

case, then, if the tangents to the two brar_che_ a' and a" of the

operation curve are denoted by TC' and TC," restecttvely (and since

" ' ), and if ql le such as to fallit may be assumed that T C < T C

between the slopes of the tangents in questlon_ so that T_ql _ T_

no improvement In execution of the trajectory would ensue by remov-

ing the constraint represented by h = 0. As scon as the index value

ql reaches either of the end-values T C' or T_' though, the h - 0
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_'cstraint must be relinquished, in order that the necessary con-

diti¢_ns on the variables be satisfied by the free system.*

Similar considerations hold in the situation where a

typical point for the engine operation happens to fall at one of

the terminal points of the thrust curves. This represents the

situation when the engine is operating with the throttle up against

* Note added by author during translation: The speclal term

"contingent conditions" is reserved to have one of the following

meanings in this treatment: (a) those conditions of constraint,

such as the ones h = 0 or _ = 0, which are stated unilaterally,

i.e., the statement that either h _ 0 or _ _ 0 must hold is inter-

preted as a contingent condition according to this definition, (b)

discontinuities in the basic data, such as in the thrust curve

cited in the present discussion, or (c) anomalous behavior encountered

at any stage in the development of the trajectory which would inter-

vene in the mathematical analysis in such a way as to make the de-

termination of the extremum invalid. For more information on this

subject consult Section 1.6 of An Engineering Approach to the Calculus

of Variations, by P. Cicala, Casa Editrice Levrotto e Bella, Turin,

Italy.

The complete trajectory being sought may be thought

of as fabricated out of a series of scallops of trajectory along

which each of the contingent conditions may or may not happen to

be in effect. In those instances where a contingent condition is

not supposed to apply, it is dropped from consideration by having

the corresponding multiplier vanish, although the same Weierstrass

function still continues to hold at all points. Contingent con-

ditions may be taken into account even when they are expressed

implicitly (as discussed in Reference 1), but in the present paper

they always will be written out explicitly. In either case, how-

ever, one must ignore the contingent conditions when the virtual

deviations represented by _* are being evaluated. Further inform-

ation on this score is also supplied in Section 7.1 of the above-

cited text on An Engineering Approach to the Calculus of Variations.



its stop. This state of affairs will persist until the straight

line with slope ql finally ceases to penetrate into the forbidden

area lying below the thrust curve. In more general terms it may

be stated that whenever an additional condition acts in the manner

of a unilateral constraint (such as, h _ 0), then E must be non-

negative for the values of A*C which satisfy the stipulated in-

equality h _ 0 and thus only that branch of the operating curve

is used which is not rejected through satisfaction of this in-

equality. The scallop of trajectory along w3ich these conditions

apply (h _ O) is terminated just as soon as ql attains the value

of TC that corresponds to the slope of the admissible branch of

the operating curve.

Quite analogous conclusions arise in regard to the

treatment applying to the drag polar. It may be observed thus

that the kind of piecemeal solutions being c_nsidered in this ex-

tension of the usual variational problem actaally are going to be

the ones which occur most frequently in the realistic practice of

trajectory determination because the drag an_ thrust operating-

curves are generally confined by bounds beyoad which they cannot

be validly employed and because it is also f_und very convenient in

most cases to replace the complicated graphs of the operating charac-

teristics by broken lines which have gently _arylng slopes only over

short stretches but which exhibit jumps in direction where they are

spliced together,

The joining together into the _omposite optimum path

of the scallops of trajectory along which th_ successively variant

sets of conditions are in force is brought about in accordance with



the dictates of Eqs. (21) and (22) and through guidance in avoiding

forbidden operating regions afforded by knowledge of the index-values.

These index-values do not undergo any changewhen the transition from

scallop to scallop is being made. Consequently, if the operating-

characteristic curves have a non-zero curvature near the juncture

point, then at the actual location of such a join it must hold true

that _L = 0, and _C = 0, so that thus _N = 0 there. Another way

of interpreting what takes place at such a juncture point is to ob-

serve that_ because all points on the thrust curve must lie on the

same side of the straight line having the slope ql' and because this

direction does not change while the transition is being negotiated,

the representative operating point under consideration cannot undergo

any jump in value, except if it possibly turns out that a segment of

this straight line just happens to coincide with the operating charac-

teristic curve.

Of course, the same sort of argument applies in the case

of the drag polars, and consequently one may conclude that at a junc-

tion point of the linked together scallops of trajectory there can be

finite changes in the value of N only if the operating curves are com-

posed over part of their extent by pieces of straight line.* When

this happens, the solution is liable to be complicated by invoking

more than one branch of the singular T extremal trajectory which arises

* The situation which is encountered when the characteristic operating
curve has a bitangent (producing local excursion in the curve by bulg-

ing away from a line that is tangent to it at two non-consecutive points)

has been treated in the initial note of this method, cited previously
as Reference 1. This case reduces to the same circumstances which are

met when the operating characteristic curve has straight-line portions.

t The extremal trajectory is said to be singular whenever the second

derivatives DLL or TCC vanish.



in consequenceof having to deal with straight line portions of the

operating curves.

7. In order to illustrate the dif_'erence between solutions

to the optimum trajectory obtained with free-and-unregulated as con-

trasted to contingently constrained engine operation, the following

example maybe examined with profit. Consider the case in which the

condition is imposed that 9 = nW - L_O, which may be physically

interpreted to mean that one wants the normal load factor always to

remain less than the specified red-lined llm_t of n. No further re-

strictions are to be invoked so long as the operation proceeds with

due regard to this limitation that it must always be vouchsafed that

L/W<n. Just as soon as it comes about that L = nW, then from that

time on there will be terms _7. ng and - _7" m to contend with on the

right hand sides of Eqs. (17) and (18), respectively. In consequence

of the appearance of these new terms, it fol;:ows that the line with

slope of q2 will now penetrate into the forbidden zone lying above

the drag curve for those abscissa values for which L>nW. The scal-

lop of trajectory for which the relation L = nW is in force begins

and ends with the provision that q2 = DL at _hese end-points, i.e.,

this means that A7 = 0 at these extremities

Similarly, if it is prescribed that the normal acceler-

ation must not exceed a certain specified li_ttting value of n.g, the

mathematical statement of the condition to be satisfied is _ = nW - L +

W cos_ _- O, and thus the scallop of traject¢.ry traversed with constant

normal acceleration has to begin and end witt the proviso that q2 = DL"

The only difference between this situation aid the one encountered

previously lies merely in the inclusion of conditional terms on the

right hand side of the Eqs. (16), (17), and f18).
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If one wishes to impose a prescribed limitation on

the magnitude of the allowable resultant acceleration, the proced-

ure to follow is to require that

h = n2W 2 - (L - W cosl_) 2 - (N - W sinl_) 2

Inasmuch as h contains L in this application, contrary to what was

agreed upon in writing Eq. (Ii), there will be introduced into the

right hand side of Eq. (19) the expression

2 _6"m.(l - aSL) (L - W cos_)

where a = (N - W sin_) / (L - W cos_), which stands for the ratio

between the tangential and normal (centrlpetal) components of the

acceleration. The scallop of trajectory traversed with constant

acceleration, so that h = 0, thus will start and end with the pro-

viso q2 = DL" It also will be true that at the same time one has

that ql = TC at these terminal locations.

If the situation is conceived of where a part of such

a scallop of trajectory is not only executed under the condition of

constant acceleration but, furthermore, is traversed under full-

throttle operation of the engine, then the negotiation of the trans-

ition regions at the beginning and ends of the part of the flight

path which abuts against the adjacent stretches of trajectory along

which the thrust is programmed must be brought about under the re-

quirement that

ql = TC (I - q2a)/(l - D L a)

A partlcularly simple subcase of this type of trajec-

tory is represented by purely vertical flight. In this contingency

the terminal points of the scallop of flight path along which a con-

st_nt-acc_lerat_on _ype of trajectory is being executed (so that
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T/m ffi constant in this instance) will correspcmd to the locations

for which it is established that ql ffi TC"

The discussion of the physical meaning that may be

ascrlbed to the Weterstrass condition in the general case of an

optimum trajectory executed under conditions of constant resultant

acceleration may be spelled out most conventer_tly with aid of an

(L, N) chart, on which the condition h = 0 ls represented by a

circle. The locus of all points for which E _ 0 is tangent to

this clrcle provlded that the control levers are not up against

thelr stops. Obvtouslyj It must be taken for granted that no point

of the locus E ffi 0 is to fall interior to this circle. The terminal

conditions for a scallop of trajectory traversed under the condition

of constant magnitude for the acceleration I then, may be seen to

correspond to the instants when the curve E ffi 0 coalesces into a

single representative operating point on the £ ffi 0 circle.

8. It wlll be instructive now to wc:rk out some illustra-

tive examples. It wtll be found though that c_ven under quite In-

elaborate underlying hypotheses concerning the nature of the fllght,

the resulting pieced-together optimal trajectcry can emerge as an

ensemble composed of rather numerous scallops. For the first appli-

cation, the following simple set of governing regulations will be

assumed:*

(a) a horizontal path is prescl_lbed for which

0

* For a bibliography pertaining to this problem consult Reference 2.
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(b) the thrust is programmed in such a way that

T = kC where k is a constant and likewise the

rate of fuel flow is bounded so that 0 _ C _ C13

where C 1 is a constant, and the maximum thrust

is denoted by T 1 = kC 1

(c) the maximum range is required to be flown, but

the time to do it is no object; while the initial

and final values of the mass and velocity are to

be assigned.

Because of the stipulation written as condition (a)

above, it follows that the right hand sldes of Eqs. (13) through (19)

are all zero, except for Eq. (16). Now the multipliers 22 and _7

are defined by means of Eqs. (16) and (14), and, because they do not

appear anywhere else, then they may be considered as divorced from the

differential system.*

Because of the hypothesis written as condition (b) above,

the complete trajectory may contain scallops which correspond to the

operating condition that C = 0 or that C = C 1, and likewise the flight

path might even incorporate a singular extremal solution that would be

derived from application of the Euler relations in the case where T

kC. In regard to this latter alternative it may be remarked that under

hypothesis (c) listed above, and by use of Eqs. (19) and (20)_one finds

that in this case

ql = k (26)

* Nevertheless, the determination of the value of these multipliers is

useful to carry out in many instances. It is sufficient to remind one-

self, for example, that the difference _2 Z - _2 A, between the values

of 72 at the extremities of the flight path represents the derivative

with respect to flight height of the horizontal range, x z - xA; that is,

the distance flown from point A to point Z.
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and _3 = mV/D (27)

while by reference to Eq. (15) it may be deduced that

_3 - _3Dv/= + I = 0 (28)

of _3 between these two equations, itUpon elimination

will be seen that the extremal solution is represented by the relation

_= 0j where

= (V - k)D - WYD L + VDvk (29)

The behavior of this solution play be examined to best

advantage by consideration of the "trajectory" traced out in the (Vjm)

plane. First of allj it may be noted that, along the lines C = 0,

which lie parallel to the V axis, Eq. (27) is still going to be opera-

and meanwhile the value of _5 may be computed by aid of Eq. (17),tive,

so that it is found without any real trouble that

v J: /; dVIi (ql - k) = D--2-
(30)

Thus this working equation allows one to compute what the index value

ql has to be at the point Q when its value al another point P, located

on the same llne, is known.

The beginning step In the procvdure to be followed In

the case of the llnes C = C 1 is to integrate the relatlon _3 = 0 wlth

aid of the knowledge that in thls case: i = -C I. Subsequently, then,

one may compute _3 by recourse to Eq. (28) _nd 25 may be obtained

from use of Eq. (20), and finally the desired Index-value, ql' may be

arrived at, by inserting the values of _25 arid _3 into Eq. (23).*

* Noted added by author during translation: By performing the evalu-
ations outlined, one arrives at the expression

P = ?50dt

(footno%e continued on next page)
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Negotiation of the corners at the juncture-points between various

loops of trajectory is governed in all cases by the rules stated in

Article 5.

Diagrammatic treatment of such trajectory constructions

is illustrated in Figure 1. Several trajectories are shown for solu-

tions all having point Z as a common terminal. For purposes of this

figure, it is assumed that the drag is composed of the parasitic and

induced varieties, so that the general law holds that D = D'

where D' = AV 2 + Bm2/V 2 (31)

in which A and B represent constants.

It is convenient to introduce the reference values

(Footnote continued from previous page)

where _D 2 = (V - c) (D - WD L + kD v) - kD

and where the functions _ and _3 may be obtained by evaluation of

the integrals

In this example the constant c appearing in Eq. (20) now vanishes.

By the use of the above-glven expressions the integrations can be

carried out along any llne represented by C = constant. In the case

where C = 0, one takes _ = D, and then Eqs. (27) and (30) are readily

obtained. The above-glven expressions are of real aid in locating

the terminal points, i.e., the "corners" of the trajectory which

correspond to the locus_ = 0. For instance, if P and Q are corners

corresponding to ql = k on the llne C = C I, then for the scallop of

trajectory running from P to Q one has that fQ_dt ffi0.

]pl
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V
r and mr, defined as

V
r

= k and m r = Vr 2 (A/B) 1/2 (32)
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Fig, 1

Optimal Trajectories for Constant Lift an J Drag Coefficients

The scallop of trajectory shown as U - M represents

part of the extremal solution corresponding to-_ = 0. This piece of

trajectory must terminate at the point M, where the fuel flow attains

its maximum value, C 1.

If it is conceded that the device under consideration

can jettison away a portion of its fuel as an unburned discharge if

it is opportune to do so (or, in other words, if the fuel flow C is

allowed to reach large values, greater than C1, while it is still
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premised that T - k C 1 - T 1 can only be true) then it will be found

that another extremal solution exists. According to Eq. (17), the

relationship which defines this new extremal curve, which is charac-

terized by the fact that T - T 1 and ql " O, is simply

T I - D + LD L - 0 (33)

and is represented by the llne designated as "r" in Fig. 1.

The integrations needed to trace optimal paths start

out from the fixed end-point Z in the treatment being considered

here. Some illustrative examples which are pertinent in those cases

where the assumed behavior of the thrust curve is not quite so ele-

mentary as the relation selected for purposes of the present discus-

sion have been described in some detail in Part II of Reference 2.

The developments presented there cover several additional topics of

importance, but the followlng further remarks of general interest

are now In order here, in order to provide a clearer physical in-

sight into Just what significance can be attached to the v_r_ous

regions of the (V,m)-plane.

In order to gain a deeper appreciation of the factors

which govern the construction of the optimal paths under a variety

of conditions, then, proceed by considering what klnd of path re-

sults by tracing out some solutions of a simple variety. For example,

consider the following situation. Let the index-value ql at the point

Z be denoted • by q_ and let it be assumed that its magnitude is such
A

* Because in the present problem one is dealing with the situation

where the extremal trajectory is slngular, there will not necessarily

be a one-to-one correspondence between an individual in_tlal value and

azunlque optimal path. For instance, to any value of q_ for which

ql _ _ there will correspond only a slngle Z-e line,^ .but every tra-
Jectory which contains part of the ext.remal solutlonJL 0 will corres-

pond to the initial value q_ - _.
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Z A

that k< ql _ q'

D2 _z 2_ dVwhere q = k + V_ D_

With these understandings agreed upon it will be seen

that then any integration started out by folloxing along the line

C = 0 through Z will yield the value of ql = k at some intermediate

point lying between Z and U , and thereafter the integration is

carried out along a line C = C 1 (such as the line denoted by "bl"

in Fig. 1). Along these lines the index-value ql is decreasing.

That is to say, in following along the line C = C 1 passing through

Z the value of ql vanishes at X. If the locus of all points where

ql = 0 is drawn in, it is found that this dividing line thus reaches

from X and extends upward to the right to intersect the line r at

the point R, and its complete shape is sketched in as the upper

dotted line in Fig. 1.

The trajectory scallop S-R of a line C = C 1 is worth

especial attention. Along this arc of curve the index-value ql

takes on the value zero where it crosses the line "r" (extremal ql = O)

and it takes on the value k where it crosses the U-M boundary (extremal

ql = k). Beyond the curve R-S, on the lines C = C 1 (such as the line

labelled "c" in Fig. 1), the index-value, ql' has the value k at the

intersection with the curve S-M, and always remaining positive, it

again takes on the value k when the intersection with the corner line

M-s is reached. For the branches of the curve C = C 1 which cross the

line R-r, where ql takes on the value zero, the value ql = k is at-

tained when the trajectory reaches the line which is the continuation

of the M-s curve, constituting the junctures of the lines C = C 1 and

C = 0.
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Thus, in summary, the meaning of the various parts of

this diagram representing the possible behavior of the variant tra-

jectories may be explained by observing the following:

The terminal-point Z may be reached by starting out

at any point which lles in that portion of the (V,m)-plane located

above the llne Z-e and C = 0, and to the right of the llne a-G-Z.

Note that the V = constant llne labelled "a" is tangent to the curve

Z-X at G. This area of permissible starting points is subdivided

into three regions of distinctly different significance by means of

the corner-llne boundaries labelled G-X-R-r, and U-M-s. The region

to the right of the llne U-M-s is covered with lines for which C = 0

(coasting flight). The region above the boundary G-X-R-r is covered

with lines for which V = constant (representing the capability of

instant fuel dumping).* The intervening region is covered by optimal

trajectories made up out of scallops for which C = C I.

Once the boundaries of these regions have been drawn

in on the (V,m)-dlagram, then the tracing out of the permissible

linked-together trajectories may be carried out quite simply. Start-

ing at any origin A, then, one must begin by followlng along a tra-

jectory scallop of the sort which is germane to the partlcular region

in which A is located, and this sort of trajectory is followed until

one comes to a boundary llne. If the crossing of the boundary of the

initial region occurs at a point belonglng to either of the dotted

curves, then one proceeds on and enters into the adjacent region by

coursing along the adjoining pertinent scallop. If, however, the

* Note added by author during translation: This situation may be

interpreted as meaning that for points located in this region the

initial fuel supply would be reduced in order to obtain greater range

through reliance on the reduction in induced drag which follows a de-
crease in weight.



26

intersection of the initial trajectory scallop occurs at any of the

boundaries labelled R-r, or U-M, or Z-U, or G-X, then the optimal

path is channelled alone these dividing boundaries themselves.

Any solution which happens to include a piece of the

line labelled "r" will have to pass down to the singular solution

represented by the line-Q = 0 through means of the "bridge" repre-

sented by the line R_S. All paths coming along the scallop U-M

will reach Z by passing over the segment U-Z, and those entering

the narrow arc G-X will be led into Z over the G-Z channel. The

dashed lines depicted in Fig. 1, such as the ones labelled "a",

"b ...., c ...., d", and "e", all represent specific examples of permis-

sible optimal trajectories that end up at Z.

9. As another illustrative example of a piecemeal solution

to a trajectory problem, let the same situation be considered again

as was just met in the preceding Article, but this time let the as-

sumption concerning the drag characteristics be changed in the follow-

ing manner. In the present instance, it will be assumed that D = D'

provided V<0.85 Vr, and that D = 1.8D' for V ) 1.05 Vr, while in the

intermediate velocity interval where 0.85 V r £ V & 1.05 V r it will be

assumed that D = (4V - 2.4 Vr)D'/Y r. In addition it is taken for

granted that k = 7 Yr"

Under these circumstances, then, the trajectories have

been calculated by following the method that has been expounded here,

and the results have been summarized in the accompanying Figs. 2, 3,

and 4. This problem has been selected because of its close bearing

on the important case of a jet plane passing tarough the sonic speed

range. Only the final results are considered in interests of brevity.
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0 O,5 IO t8 V/V_

Fig. 2

Optlmal Trajectories for Jet Plane

Passing Through Sonic Speed Range

With exception of its behavior in the interval

0.85 V r _ V _ 1.05 Vr, the extremal solution J)-= 0 does not differ

now from what was found to hold in the previous case, so that one

may immediately draw in the scallops labelled "h" and "r" in Fig. 2.

At the end-points of this transonic interval, denoted by the letters

U and V, two vertical lines, "p" and "q", are located; they are

parallel to the m-axls, or at least they may be erected as parallel

right out of the limits of the diagram.

Another line of importance is the "corner" llne denoted

by "_"; this curve is the locus of all points where the index-value
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ql becomes equal to k, according to Eq. (30), by travelling along

lines C - 0 after having started out on the llne "p", where the value

is also k. This llne "_" and the upper piece :_f extremal_- 0 which

is denoted by "r" will intersect in a point S. The way one traverses

this (V,m)-dlagram will depend, naturally, on what terminal point is

selected for the trajectory as well as on the initlal T I value.

Some details of permissible trajectories are shown in

Figs. 3 and 4, for a portion of the whole field, where two different

cases are illustrated for a terminal point lylng somewhere below and

to the left of the point R, shown in the more inclusive diagram of

Fig. 2; the same lettering is used in all these figures (2 through 4).

In Fig. 3 the descrlptlon of what occurs is given for the situation

where T 1 happens to be equal to the drag value, D, of a point M lylng

on the vertical llne "p". The case of impulse burning is illustrated

by the sketch of Fig. 4.
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Fig. 3

Construction of Boundaries to SubfieLds Useful
in Composing Piecemeal Optimal Trajectories for

Jet Plane Operating in Transonic Range
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Fig. 4

Portlons of Optlmal Trajectories for Impulse
Burning wlth Transonic Jet

In the first of these two cases, the llne p-M-H-L-S-s

represents the boundary between an upper region where C = C1 and the

nether region where C = 0. The scallop of curve labelled M-H is ob-

tained by determining the points where the index-value ql becomes

equal to k by starting* from a point of the line "p" located some-

where below the level of M and following the lines C = C 1. For In-

stance, starting from the point labelled N where ql = k, and by

travelling along on a curve which passes a llttle to the left of the

dotted line marked M-H, one arrlves at a value of k for ql once again

when the point P is reached (thls path has not been drawn in on Fig. 3

because it would be too close to the arc of curve M-H to be readlly

distinguishable from it).

* The use of the word "starting" merely refers to the sense of the
integration, which happens to be that of negative t.



30

Now if one takes up the integration at points of the

M-II scallop, so that by starting with ql = k and progressing along

the lines C _ 0 the value of k for ql is again attained, the path

will end at points such as Q, lying on the piece of boundary curve

denoted by H-L. Similarly, if one starts ou_: from a point belong-

ing to the segment of arc M-R, the piece of i}oundary labelled L-S

is obtained, which corresponds to the general boundary curve de-

picted as line "_" in Fig. 2.

By starting with ql = k over any of the boundary

S-L-H and from points on the lower portion of line "p", one will

find that by travelling over the curves C = _1 the value of ql = k

will once again be obtained when the line "s' is met. Once the

boundaries have been established in this manner, it becomes a simple

matter to trace the permissible paths emanating from any initial

point.

In regard to the trajectory pa_ssing through the point

P which comes from an initial point lying to the right of line "s"

it may be observed that the linked-together _callops of complete

trajectory are composed of: firstly, a segm_nt traced out over the

line C = 0 rising up to intersect the bounda:y "s"; secondly, a piece

of trajectory traversed over the line C = C 1 until the point Q is

reached; thirdly, a short segment from Q to _ for which C = 0; fourthly,

the piece of arc running from P to N over whLch C = C1; and, finally,

an extremal arc descending from N along "p" for which C ( C 1.

In the case of impulse burning, where C 1 =oO , it turns

out that one is confronted with the new situation occasioned by the



fact that a portion of the trajectory diagram is triply covered;

this is the portion of Fig. 2, set off by hatchure lines, which

lies between the line labelled "]" and the one labelled "a" (for

which C =_) which is tangent to the line "_". The construction

of the trajectory solution for maximum range will thus have to be

somewhat more circumspectly dealt with in this eventuality, and_

thus, to this end the linking together of the kinds of permissible

path* which will be traversed under such circumstances is shown in

some detail in Fig. 4. The boundary separating the regions where

C = C 1 from the regions where C = 0 has been shown by the contour

labelled p-T-S-r. All the permissible paths having their origins

located above the boundary al-T-S-b 1 will eventually come together

to course along down the extremal solution denoted by "r". As

these trajectories are followed further, it is seen that they will

reach the line "p" by passing over the "bridge", denoted as the line

R-S, and then they proceed on down the extremal "p" itself. If the

initial point of the trajectory happens to be located at any point

lying below this contour al-T-S-bl, the permissible trajectory is

simply traversed directly through the intersection point lying on

,,p,,.t

* The scallops of trajectory corresponding to paths over which C = C 1
have been designated by the symbol "a" in Fig. 4, while the paths

over which C = 0 have been indicated as the family of curves "b" in
this figure.

t Nothing about the procedure now being enunciated needs to be changed

in any essential way if one wishes to include the possibility t:_t some

ballast or cargo is suddenly cast away. This situation may be handled

as follows. Let the dropped mass be denoted by m". Let it be assumed

that no velocity change takes place when the change from mass m' to the

residual mass m' - m" takes place. For the assigned values of V z, m z,
m', and m' - m", then, the optimum trajectory is constructed by start-

ing at Z and progressing to a generic point C of the line for which

m = m' - m" just as was done previously in Figs. 1 through 4. In order

(footnote continued on next page)
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10. Everything that has been said in Article 9 pertains to

the case for which h C ÷ O. If it should hapf.en that h C = 0 (or if the

similar situation should be met where _L = 0), then the Weierstrass

function does not tell how long the conditioi h = 0 (or, similarly, the

condition _ = 0) is to apply. The preceding illustrative examples

show, however, that even in this eventuality there should arise no real

difficulty concerning the determination of tt_e character of the sub-

regions governing the permissible types of trajectory that are marked

off in the (m,V)-plane, provided it is agreec that E is to be taken as

non-negative along every optimal path which lies in proximity to the

solution under examination. In fact, it was shown in Article 9 how

one deals with a similar apparently ambiguous situation. In that il-

lustration there existed a discontinuity in the rate of variation in

drag, DV, at the velocity value of 0.85 Vr, but one was able to deter-

mine, satisfactorily, by treating each case _ndividually, just how

far along the line representing V = 0.85 V r one needed to go. On the

other hand, even though another discontinuity in D V existed at the

velocity value of V = 1.05 V r it turned out _:hat this line was auto-

matically rejected from being considered as l,art of any permissible

optimal trajectory.

(Footnote continued from previous page)

to find the continuation of the path Z-C one merely starts out now

from a point B for which the coordinates are mB = m' and V B = V C

while the multiplier _B is also retained at the value _3C; from

this point on one runs along a trajectory sc_llop which is consistent

with the new value of ql"
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In order to furnish more information about how to

handle such supposedly indeterminate situations which arise when

either h c or 2L is zero, the additional detailed example will be

considered now which illustrates the procedure to be used for

climbs executed in minimum time. It is premised that the aircraft

weight is going to remain constant, the induced drag is to be zero

(D L = 0) and the thrust function is considered to be assigned, or

T = T (z,V). In these circumstances then Eqs. (15), (16), and

(20) now reduce to

_3 + _2 sin_ + _3 Nv/m = 0

and

v-  3g) cos -0

z + = 1

(35)

(36)

(37)

By use of the relation _2 v - _3g = 0 it may be im-

mediately recognized that _3 = m/N, and thus the following singular

(see footnote on page 15) solution is obtained for the optimal tra-

jectory:

V 2

N + VN v = -_-, N z (38)

In addition, as indicated by Eq. (36), it is seen that part of the

complete trajectory is composed of sections along which the flight

path is vertical; i.e., dives and straight-up zooms may comprise

portions of the linked together trajectory.

In regard to the calculation of the Weierstrass

function it may be observed that F does not contain _ and conse-

quently it will be best to consider the variation _. Thus the

Weierstrass condition may be written now as

E = (_3g - 22V ) z_*sin_ (39)



It is most apropos for bringing out the special

features of this problem to consider first the case where there

exists a discontinuity, at a certain altitude, in the value of

the derivative Nz, so that there will also exist a discontinuity

in the value of V there, according to the dictates of Eq. (38).

What transpires in the (V,z)-plane in the reighborhood of such

an anomalous point is represented in Fig. 5. The jump in the

value of N may be considered to be so small, _hen depicted in
z

the scale conveniently employed in this figure, that for all in-

tents and purposes the pertinent curves may be represented by

straight llnes.

Fig. 5

Trajectory Construction for Ver1:Ical

Paths Along Which Discontlnulti¢-s in
the Net Thrust Take Place
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The situation which arises when N z diminishes with

increasing altitude is readily dealt with, as illustrated in

Fig. 5(a). In this case the extremal solution given by Eq. (38)

is represented by the line p-P at altitudes below the altitude at

which the discontinuity occurs, while it is represented by the

line Q-q at altitudes above the discontinuity altitude. These

two branches of the extremal solution are joined by the P-Q segment,

representing horizontal flight. From any of the points of the com-

posite trajectory p-p-Q-q a zoom "s", or a dive "d" may be initiated

The graphical representation of what occurs in the

case where the discontinuity has the opposite sign, for which, there-

fore, vQ_ V p, is given in Fig. 5(b). In this figure it is indicated

that the local trajectory starts from any point along the extremal

p-P and a vertical zoom is initiated there. Then starting with the

initial set of values for _3 = m/N and _2 = W/NV at such a point

on p-P the subsequent values of _2 and _3 are calculated, using

Eqs. (35) and (37), by travelling along the zoom path, until the

ratio _3 / 22 again attains the value V/g. When this point is

reached the zoom must be abandoned and a dive commenced. This re-

versal occurs at points along the dashed line which intersects at

the point N the branch of the extremal solution denoted by Q-q. In

this manner, thus, the zoom trajectory M-N is delineated which forms

a bridge between the two branches of the extremal solution.

With this construction carried out adequate description

of the significant areas of special interest for variant behavior

along sequential parts of the flight path has been supplied, except



for the shaded portion of the diagram which is bounded by the "corner"

curve labelled P-T and the two boundaries representing dives, one

tangent at T and the other starting at P. This region is triply

coveredj and the minimum time path will have to be selected from

among three possible solutions Thus the completion of the (V_z)-

diagram may be accomplished by supplying the scallop of trajectory

running from T to R_ shown as a dot-dash line in Fig. 5(c)_ where

the point R is located just a little below P _f Fig. 5(b) On

the right of this line p-R-T-N-q one finds dives starting out at

the points of p-R and of T-N-q_ while to the left of this boundary

one finds zooms starting out from the segments of line lablled p-R

and N-q.

11. The above-given examples demons:rate that even for

discontinuous casesj and for singular extremal_ the requisite tra-

jectory field-plots may be constructedj which, in a sensej may be

treated in such a way as to be considered simpiy covered. A simply

covered field is onej that is_ such that for a_iy point in this field

of trajectory representations there will exist only one uniquely de-

fined path leading to the assigned terminal-pc:hi and fulfilling

the condition that E is everywhere non-negative for any variation

from the optimal. An exception to this condit:ion will be met_ of

course_ along the singular segments of the ext_'emal represented by

straight line portions of the operating curves for which_ in this

instance_ the value of E is zero for certain virtual deviations

but it becomes positive close by to the extremtl arcs.



Although the sufficiency theorems of the calculus of

variations cannot be applied rigorously in these singular cases,

nevertheless it can be demonstrated, as in the above examples, that

there do not exist, within the permissible region of operation, any

better optimal trajectories leading to the given terminal point

than the one constructed by the methods illustrated. For instance,

in regard to the problem treated in Articles 8 and 9, it is worth

pointing out that if one attempts to traverse a trajectory going

from the assigned point A to reach the terminal point Z by follow-

ing any other path, call it "c", than the one constructed by follow-

ing the processes illustrated in those Articles, and denoted now as

path "e", it will be found that a loss in range ensues, of an amount
Z

expressed by )A Edt. This integral is computed by following along

the alternate path "c" and using in the summation process the local

values found for _3' m, and ql' with the further understandings

that the condition _*L = 0 holds and that the _ *C and _*N devi-

ations are to be computed as the differences between the values per-

,
taining to the alternate path "c" and the locally optimal ones.

This integration will turn out to give a positive result for any

alternative path differing from the optimal one

Naturally, the mode of approach t and proof, being

advocated here, requires that a great deal of exploration and probing

* The expression for E will be indeterminate in the region of the

trajectory-field covered by the lines V = constant, because in this

region it is true that ql = 0 while _*C = _. In this eventuality,
however, it may be readily shown that in this region one

may write E = -V - _3 _

where V is the value of dV/dt that applies along the alternative path

"c", and hence it is not difficult to prove that in this case also it
turns out that E _ 0.

It is being tacitly assumed here that the problem meant is one in

which the terminal point is assigned.
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of permissible boundaries and characteristics of the pertinent

trajectory-fleld be carried out. At least, even if one restricts

the investigation to the determination merely o£ a relative mini-

mum, still the region close to the solution being sought must be

thoroughly mapped out and examined in detail Such backlng-and-

filling type of investigations and exploratory probings will In-

crease greatly in complexity, of course, if the number of variables

which come into play are allowed to increase. On the other hand,

it may be remarked that even in the case of actual variational

problems where, as a rule, both the terminal and inltlal points

are assigned or are subject to prescribed conditions, the optlmal

trajectory is also obtained by trial and error. The tentative

solutions used in such trial-balloon operations also serve to test

out and define the trajectory-fleld under examination.

Translatad by R. H. Cramer

Appl_ed Physics Laboratory
The Johns ilopk_ns University

Silver S[:rings, Maryland
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